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Multiple Scattering in Random Media 
I. Restricted Two-Body Additive Approximation 

Eugene P. Gross I 

Received June 25, 1980 

We present a microscopic theory of the problem of finding the properties of a 
particle interacting with potentials located at random sites. The sites are gov- 
erned by a general probability distribution. The starting point is the multiple 
scattering equations for the amplitude (ki lT~lk2)  in terms of the individual 
scattering amplitudes (k l l t , lk2) .  We work with quantities A,~ defined by 
(kl lA~lk2)  = (k~] T~lk2)exp[i(k ~ - k2)R,d. The theory is based on a splitting of 
the fundamental equation for A into equations for the mean A-,~ ~ A and the 
fluctuations 6A s. Neglect of the fluctuations yields the quasicrystalline approxi- 
mation. We rearrange the equation for 8A, to isolate the collective part of the 
fluctuations. We then make the simplest microscopic truncation which is that 
8A,~ is a restricted two-body additive function of the site positions. With the 
contribution of the collective fluctuations, this yields results for A that are 
accurate to order t 4. 

KEY WORDS: Multiple scattering; random media. 

1. INTRODUCTION 

In the present series of papers we propose an approach to the theory of the 
propagation of waves in a medium with randomly placed scatterers. (1) For 
concreteness we focus on the electronic properties of systems with struc- 
tural disorder. This is a much-studied problem of great practical interest, 
with a wealth of experimental data to be explained. It thus poses difficult 
challenges to a general theory. (2) 
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586 Gross 

The approach followed here diverges at a relatively early stage from 
standard treatments. We call it a "microscopic" theory of multiple scatter- 
ing. The total scattering operator T is some function of the positions of the 
scattering centers, i.e., as a random variable obeying a random operator 
equation. For a prescribed probability distribution, there is an averaged T 
operator, which is one of the quantities to be determined. One can formally 
divide the equations for T into an equation for the average, T, with a part 
that is driven by a suitable average involving the fluctuation ST. 8T obeys a 
closely related random operator equation. A natural procedure is to set up 
a hierarchy of equations involving successively higher-order averaged corre- 
lation functions. O~ One is then faced with one problem of defining a 
truncation scheme. Standard theories operate directly with this "original" 
hierarchy, defining self-energy functions, vertex functions, etc. 

The microscopic approach introduces a number of different view- 
points. First, one can do some rearrangements of the random operator 
equations. For example, in Section 4 of the present paper we eliminate the 
collective part of the fluctuations. This leads to a modified hierarchy for the 
correlation functions. Other manipulations of the microscopic equations are 
possible. In later papers we introduce a microscopic resolvent operator for 
the operator equations for the fluctuations. The resolvent, in turn, can be 
subjected to an analysis in terms of its average and its fluctuation. This 
allows one to define different hierarchies and truncations. 

Second, new types of truncations are suggested by the microscopic 
theory. The iteration of the random operator equation in powers of the 
individual scatterer amplitude brings in successively more complex func- 
tional dependences of the fluctuations. The idea is to constrain the func- 
tional form of the random fluctuation. For example, it may be taken to be 
a two-body additive function of the site positions. This fixes all of the 
average correlation functions. It defines a truncation of higher-order corre- 
lation functions as linear functionals of lower-order functions. It is used in 
conjunction with suitable hierarchy equations. There is guaranteed accu- 
racy to a given order in the individual scattering operators. 

This same naive idea was the basis of our earlier work on the classical 
kinetic theory of fluids. (4~ There it was used to provide truncation schemes 
for the Liouville equation. The truncations inevitably involve static correla- 
tion functions of higher order than the pair distribution. The point of view 
is that these static functions are given. Approximations such as the 
Kirkwood superposition approximation are made at a later stage, with 
reference to the particular system. 

In the present work on multiple scattering theory, the first two papers 
correspond to the most primitive approach to kinetic theory. We use two 
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elementary truncations, namely, the restricted two-body approximation 
(2BA) and the general 2BA. In the first (present) paper, we introduce 
definitions and the basic governing equations in Section 2. In Section 3 we 
set down the equations for the diagonal and off-diagonal matrix elements 
of the mean value of a quantity associated with the average T matrix and 
the self-correlation function. The formal solution is given in terms of 
integral kernels depending on the fluctuations. Complete neglect of the 
fluctuations corresponds to Lax's quasicrystaUine approximation. 

Section 4 contains an analysis and manipulation of the microscopic 
fluctuation equation. We eliminate the collective part and study a linear- 
ized fluctuation theory. We also formulate the first equation of the asso- 
ciated hierarchy of correlation functions. Section 5 treats the restricted 2BA 
both for the case of totally uncorrelated scatterers and for general correla- 
tions. The equations are very simple, and in the case of separable scattering 
potentials one can find the exact solutions for an arbitrary probability 
distribution for the scattering centers. The total average-scattering ampli- 
tude and self-energy depend on the pair and triplet static distribution. We 
also superimpose collective contributions on the restricted 2BA and obtain 
results for the self-energy accurate to order t 4. Section 6 compares the 
results with two well-known theories. The first is the SCA (self-consistent 
approximation) of L. Schwartz and H. Ehrenreich. (2) The second is the 
EMA (effective medium approximation) of L. Roth. (2~ 

The second paper gives the corresponding analysis for the general 
2BA, which is more accurate but more complicated. In later papers we 
develop a systematic general scheme. 

2. GENERAL FORMULATION 

Consider the Hamiltonian for an electron of unit mass moving in a 
potential due to impurities with site positions R 1 . . . . .  a N (h = 1): 

]72 N N 
n = -~- + V, V = ~ v ~ - -  ~ ~ v(x - R~) (1) 

The impurities have a probability distribution W ( R  1 . . . . .  RN). In each 
configuration there is a microscopic Green's operator in energy space: 

G ( E )  = ( E  + i c -  H )  - I  
(2) 

Go(E ) = ( E  + ic - ]72//2)-' 

We are interested in computing the ensemble averaged Green's operator, in 
order to calculate the momentum spectral density and density of states. 
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In standard notation 

G--- G o+ G oVG = G o+ Go TG o 
(3) 

T =  V +  VGoT= E(I + GoT ) 

The multiple scattering formalism is introduced via the definitions (5) 

t~ = v~ + v~ Got~ 

N (4) 

B~a ~ = 1  

The momentum space matrix elements of T~ are 

(k,lt.lk2) = (k,[tlk2)exp[ i(k 2 - kl)R~] (5) 

and we use the notation 

(l[t~]2) = ( l[ t[2)exp[i(2 - 1)R~] (6) 

Now introduce quantities A~ by the definition 

(lIT~[2) = ( l [A~[2)exp[ / (2 -  1)R~] (7) 

The basic microscopic equation is 

(lIA~I2) = (l[t[2) + ( l l t a0[3)  ~ (31A~[2)E=~(2 - 3) (8) 
B ~ a  

where 

E~# (~) = expl iX(R/~ - R~ )] (9) 

Wave vectors that are underlined are to be summed. 
To characterize the sites we introduce the microscopic two-point 

function 
N 

E2(X [ - X) = E ~ E~(X) ~ NF2(X ) (10) 
a B ~ a  

with the associated equilibrium pair distribution ff2(h), ff2(h) is the average, 
taken with the probability distribution W. It is independent of N and starts 
as the first power of the density. Because of translation invariance, the 
average .4~ is independent of a. To order t 2, in iteration 

(lIA'~12) = (l[t]2) + (lltGo13)(3[t[2)ff2(2 - 3)  (11) 

Note that t is of order ~2-1, where f~ is the volume of the system. Note also 
that if2(0)= N. We also encounter higher-order site correlation functions. 
The microscopic three-particle distribution is 

1 ~,, Ev/~ (Xl) Ev~(X ) (12) F3(X,IX) = 
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The average with W enters as one of the t 3 terms in the expansion of A~. F 3 
is also independent of N and starts proportional to the square of the 
density. 

Note that A-~ has both diagonal and off-diagonal elements. For the 
diagonal elements we have simply 

(11T~11) = (11Yo11) (13) 
For the off-diagonal elements 

<11•12> = (llZ~12>exp[i(1 - 2)R~] (14) 

Thus these elements represent "self-correlation" functions. 
A number of static correlation functions will be encountered through- 

out the text. Let 
a c = c - g  

= y ,  (15) 
-y~a 

e~ -- ~] e~(X) 

The simplest static average is 

Z 6Eff(X)6E~ (2~,) -- N {ff'3(/~l I --~k) -I'- ff2(X -- ~'1) -- F2(~k)ff2(~kl)) (16) 

3, EQUATIONS FOR THE AVERAGE 

The first step is to split the basic equation for the A~ into equations for 
the average ~To and the fluctuation 8A~. The average value A~ is indepen- 
dent of a (A-~ = A). We introduce a kernel 

(1[K0(2)13) -- (l l taol3)ff2(2 - 3) (17) 

It is useful to separate terms involving the wave vector 3 = 2. The equation 
for the average A is 

(IIAI2) = ( l l t l2)  + g(l l tG~ 

+ A( 3_12)< 11R0(2)l 3 ) (  3-[A 12> 

+ (1]tG013) ~ aE~e(2--3-)<3_[aAel2)A(3-J2 ) (18) 
/3=r ,~ 

The last term expresses the effect of fluctuations and has no contribution 
from the intermediate state 3 = 2. The symbol ~(3]2) means exclusion of 
3 = 2. It is possible to express 6A~ in the form 

(II,~Aol2 > -- (llF~(2)I3>(3_1AI2>a(3 12 ) (19) 
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This involves only the off-diagonal elements (3[A 12). The effects of fluctua- 
tions are contained in a new kernel 

(11K'1(2)13) -- (1/N)(l[tGo15_)2x(512)~, 8E~ ( 2 -  5)(5_[FB(2)13 ) (20) 
B 

Now let K = K 0 +/~1 and separate the equations for A into diagonal 
and off-diagonal parts. 

(llAI2)- (lIK(2)I3)(31AI2)A(312) = ( l l t12){  1 + gao(2)(2lAI2)} 

(21A 12) { 1 - g(21 tG012) ) -- (2[ tl2 ) + (21K(2)i 3_)A (312)( 33_[A t2) 

(21) 
In the future all intermediate wave vector sums exclude the value 2 unless 
indicated otherwise. It will be understood that everything depends paramet- 
rically on 2. We introduce a matrix notation and a resolvent matrix 
R* = (1 - _K)-1, i.e., 

(IIR*I3) - (IIKI 4)(41R'13 ) = 8(113 ) (22) 

Then 

(1]A[2) = (IIR*tl2)(1 + NGo(2)(2IAI2)) (23) 

For the diagonal element, we have 

( 2 I A I 2 ) ( I  - NGo(2)0(2)) = 0(2) 
(24) 

Q(2) --- (21R*t12) 

The self-energy s is related to (21A[2) by 

N(21AI2) 
Z(2) = 1 + NGo(2)(2IAI2 ) = NQ(2) (25) 

The tasks of the theory are first to evaluate the kernel K], and then to 
solve the resolvent equation to find R*. Neglect of fluctuations entirely 
means setting K =-K0. The resolvent R* is then obtained by solving the 
integral equations of the quasicrystalline approximation. Note that by one 
iteration 

Q(2) = (2[t12) + (2[/~0R*tJ2) + (2lhT]R*t]2) (26) 

/g0 is first order in t and the fluctuation kernel/~l is second order in t. Of 
course, it is easy to achieve accuracy to any desired power of t by iteration. 
This, however, does not dress propagators properly. 

The problem of solving the integral equation for R* for a given kernel 
K may be attacked by numerical or variational methods. For general 
theoretical arguments it is appropriate to use Fredholm theory. The books 
of Smithies (6) and of Watson and Nuttall (7) may be consulted for discus- 
sions of cases where the theory must be modified. The resolvent operator is 
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expressed in terms of the iterated kernels of K. Let 

The Fredholm formulas are 

d=kdn, 
o 

d o = l ,  

Do= *g, 

591 

D = ~-]D n 
o 

dl _ O17 d2  ~ 1 2 = ~ ( O 1  - -  0"2) ( 2 8 )  

D, = *g2_ ,go, 

The higher-order terms are computed from the recurrence relations 

d.  = - ( 1 / n ) T r D n _  , 
(29) 

D,, = d,, K + K D  n_ 1 

If the kernel (11J~(2)13)= K(2; 3) is independent of the first wave vector, 
we have /~2= K%, so that D 1 = d 2 = 0. The Fredholm expansion then 
terminates. This is the case for the one-dimensional delta function poten- 
tial. Then 

2(2) = N t ( 2 I R * [ 2  ) = N t / D ( 2 )  

D(2) = 1 -  K(2;  3_) (30) 

The QCA result uses *g0(2; 3) = tG0(3)P2(2 - 3),/~l = 0. 
In the rest of this section we indicate the values of K, that result from 

the analysis of the fluctuations by simple truncations. 
The simplest noniteration truncation is the restricted 2BA. It is 

(11F~(2)I3) -- (1 [ H ( 2 ) I 3 ) S E ~  - 3) (31) 

The function (11H(2)13 ) ~ (11tG013) as t ~ 0. This two-body additive term 
agrees with the leading source term that drives the fluctuations. It guaran- 
tees at least t 3 accuracy for Q(2). (11H(2)13) will be determined by 
satisfying a hierarchy equation. 

In the restricted 2BA, the kernel *g~ may be written as 

(11K',(2)13) = ( l l t a o l 3 ) f f 2 ( 2  - 3) + N ( l l t a o l 3 ) ( 3 l n ] 3 )  

+ ( l l t G o [ 5 _ ) ( 5 l n l 3 ) f f ~ ( 3  - 5)A(513)  

+ N(  I I tGol3)(3l n13)ff2(2 - 3) 

+ ( l [ t a o l S _ ) ( 5 _ l n 1 3 ) ( f f 3 ( 3  - _51 5 -  2) 

- i f(2 - 5_)F2(2 - 3) }A(513) (32) 

t/ 

o,~ = T r ( K )  (27) 
R *  = 1 + D / d  
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In the first step in iteration for I'~, when H ~  tG o, the term on the first line 
(viz.,K0) is ~ nt, where n is the density of scatterers. Note that the 
correlation functions if2 and if3 go as n and n 2, respectively, at low 
densities. The terms on the second line are of order nt 2. The third and 
fourth terms are of order n2t 2. 

It  is to be noted that even the lowest approximation involves the 
three-particle static correlation function. This is necessary if one is to 
achieve t 3 accuracy for Q(2). 

In the completely random system, in this restricted 2BA, the off- 
diagonal elements (51H[35 do not contribute to K 1 because of the trivial 
nature of the static correlation functions. In addition K 0 is zero. Then 

(11K'1(2)135 = N(11 tGol3)(3lH 135 (33) 

Anticipating our results, we find for the fully random system 

(31H[37 = (31 t]3)G~(3) 
(34) 

G~'(3) = Go(3)[1 - N(31tGo[35]-I 

For the special case of a one-dimensional delta function the scattering 
matrix (1[t[25 is independent of the wave sectors. Then (11K1(2)13~ = 
Nt2Go(3)G~(3). The resolvent R* obeys 

(IIR*[35 - Nt2Go(4)G~(4)(4]R*135-- 6(113 ) (35) 

with the solution 

(1[R*[35 = 8(113) + 

The self-energy is 

Nt2Go(3) G~) (3) 

1 - NtZGo(4) G~(4-) 
(36) 

Z(2) = Nt(2IR*I3 > = Nt[ l  - Nt2Go(4)G~(4)] -1 (37) 

This is independent of the wave vector 2. The addition of collective effects 
leads to a dependence in the next order in t. This is shown in Section 5. 

For this one-dimensional delta function (and also for separable three- 
dimensional t matrices) it is also possible to derive explicit results for s 
for the case of general randomness. The results are contained in Section 5. 

The general 2BA provides a more accurate treatment of the fluctua- 
tions. We assume 

(11F~(2)[35 -- ( l i B ( 2  - ~_; 2)1356E~ (38) 

There is a special role for the wave vector X = 2 - 3, but now we have 
a more general function H which is dependent on X. This functional form is 
suggested by performing one iteration on the microscopic equation for F~. 
Again the function H will be determined by forming an appropriate 
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hierarchy equation. This truncation gives 

(1[K',(2)13) -- <l[tG012 - _X,)(2 - X,[H(2 - X; 2)13) ~ 
/3 

For the fully random (uncorrelated) system 

(11K,(2)13 > = NflltGol2 - _X)(2 - X__l/-/(2 - _X; 2)13> 

8e (x) ss (x,) 
N 

(39) 

(40) 

Anticipating our later study of H, we quote for the delta function case 

(1]K~(2)[3> = NtZG~(3){ G0(3 ) + tG~(2 - _X)G0(3 - _X) + - . .  ) (41) 

4. ANALYSIS OF FLUCTUATIONS 

4.1. Manipulation of Fluctuation Equation 

The basic fluctuation equation is 

(11~A=I2) = <l [ tGI2  - X_)S/~ - _XIAI2 > 

+ ~ I [ t G 0 [ 2 - _ X ) ( F z ( X ) / N ) ( 2 - 1  ~ 8A32) 

+ fflltG012 - X)8 ~ 6 E ~ ( X ) ~ 2 -  X]3A,[2) (42) 
/3~a 

This way of writing the equation exhibits a linear part in the fluctuation 
equation. The linear part is also "collective," i.e., a symmetric sum over 
particle amplitudes. In the limit N ~ ~ one can ignore the restriction f lv  ~ a 
in the collective term. 

In the interest of compactness, we define the kernel 

f f l l ( K 0 ) j 3  ) = NflltGol3)G,(2 - 3)(1 - 3~,~) (43) 

The average is the same for every pair and is (a=/=fl) ~1l~'o[3 ~ = 
(11tGI3)F2(2 - 3). 

We will also frequently encounter  the sum over the right-hand and 
left-hand particle indices 

K ~ = ~ (Ko)~,  K d  = ~ (K0)/~ ~ (44) 

and a collective amplitude ~ = ~]~A~. We will use a matrix notation with 
reference to wave vectors. Then 

~ll3A~I2 ) = ( I / N )~ II3K~ (2)A [2) + (1/ N )< l[Ro(2)8 ~[2 ~ 

+ (1/N)8(t ~ (3Ko)~fiA~2) (45) 
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The term involving K 0 includes the wave vector 2 in the matrix sum over 
intermediate vectors. It does not occur in terms involving 6K o. 

A standard approach is to form a hierarchy of equations for correla- 
tion functions, starting from this microscopic equation. We will, however, 
show that it is profitable to manipulate the microscopic equation before 
proceeding to hierarchy formation. 

We form an equation for the collective part 

8~ = (1/N)~,SK~ + (1/N)~6K~SA~ (46) 
c~ B 

and solve for 8g  using the resolvent (1 - Ko)-1 

8 ~ = ( 1 -  K~ ~SK~ " N B N (47) 

Inserting this into the equation for 8A., we have the revised starting 
equation 

_ , 

v -  

__ 8Ae 8K~SAr (48) 
+ 8)_.~ (SKo)~/~ ---~- +/~o 1 8 2  N 2 

B l - K 0  B 
It contains higher-order collective terms of type ~SK~6A B. In the present 
elementary version we do no further manipulations to handle these terms. 

We now free the equations of the overall matrix factor X by writing 

(118A.12> = ( 11r.(2)l 3_>( 3_[A 12}A( 3_12 ) (49) 

Note that because (SK0)~/~ is a fluctuation, we do not encounter the value 
3 = 2 in the sum. Then 

(1112.(2)13 > -- (118J~(2)13 > + 8 ~ ( l l&~ > (50) 
B~a 

where 

1 1 1 ~_~sKO (51)  so(2) = ~ + - 

1 O. 1 8K~ (52) 

Here q,, = 1 for every c~. 
We see that this is a nontrivial rearrangement. We can consider the 

results obtained when one neglects the nonlinear fluctuations. Then F~ is 
given by the source term 8J~. The first part is a direct two-body additive 
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term involving ~ , B ~ 6 E ~ B .  The second part is a collective term. For each 
it involves E r 1 6 2  = 6E2, i.e., pairs of particles not involving the 
particle. This consideration suggests natural microscopic truncations when 
we include the nonlinear terms. 

In the linear fluctuation theory the kernel K~ is 

1 (11K,(2)13) = ~ ( 1  ~ 6K~F/~(2)3) 
B 

_ 1 <lltGol4><41tGol3> N eE2(2 - 4)8E~ - 3) 
N a - 

(53) 
The second, collective contribution vanishes for the uncorrelated system 
and we have the results of a restricted 2BA with (11HI3) = <l]tG013>. For 
the case of general correlations there is a collective addition (1 ]AcK~(2)[3 >. 
For the delta function case the sum over the three variables yields a t 3 
correction 

N t G o ( 2  ) + x 
AcK'~(2; 3 )  = 1 - x - N t G o ( 2  ) t Z G ~ 1 7 6  8F2(2 - 5-)6['2 (2 - 3) (54) 

where 

x = t G o ( 4 ) A ( 4 1 2 ) f f 2 ( 2  - 4 )  (55) 

This is a t 4 correction to the self-energy. 

4.2. Hierarchy Equation 

We introduce correlation functions that have a nonzero average. The 
sum of the wave vectors occurring is zero. This is also the case for 
microscopic approximations to F~. The simplest correlation functions are 

W2(X) = E E2 (x)r~ 

(56) 
U3( klIIX)= E~r 

74-/34-a 

These are particle irreducible. We also work with wave-vector- 
irreducible quantities, i.e., none of the wave vectors is zero. A typical 
wave-vector-reducible quantity is U3(- ~ II X) = NU2(~). 

The first hierarchy equation is formed by taking the equation for F~, 
multiplying by Er.(?t) for fixed 7 =/= a, and averaging. Since Ew(X)(11r~13> 
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is the same for each pair y,a, we may taken (1/N)ZvE.Ev~(X)(IIF~]3), 
instead. This is the motivation for defining the collective quantity U2(?` ). 

The kernel/~1 is given in terms of //2 as 

(llf 'l(2)13) = (lltGo[2 - X_)(2 - X l U-2(X_)IN)A(_X I 0 ) (57) 

The hierarchy equation for U2(?` ) is 

( l lUz(?`)]3)=(1 ~ 6E2(?`)6J . 3) + 2 2 ( l l6EI(X)6L.ffBI 3) (58) 

T o  ge t  a more explicit expression we first isolate the average parts of  6E2(?`) 
a n d  of  8 L ~ .  T h i s  l e a d s  to 

3 / 1 01 

E 
C~ 

(2 - _all 

F2(?`l) ?`t E2(N X)EFB 

+ ~  ~ <llE2L~flT,135 
a /3~ct 

Next apply particle and wave vector reducibility to obtain 

(59) 

<11E2 (a)L.aVel3> = <lltGol2 - X__t>Zx(?`117 )̀(2 - ~,[ U3(-? `  [I _X~)i3> 
/3=#a 

+ g ( l l t a o l 2  - ?,><2 - ?`1 U2(?`)13) 

+ (11 tGo]2 - X~)(2 - X_l[ f2(_X t - X)I3)~(_X~ IX) 

+(1 1-~VoJV~ tOo2_?`l / 
( E2(Xl - A) ) 

X 2 - X_, ~r- E E~ (?`,)F~ 3 (60) 
B 

We regroup this to write 

(1[ U2(?`)13) - N(I[ tGo[2 - ?`)(2 - ?̀ 1 U2(?`)]3 ) 

- ( l l t a o l  2 - X_l ) (2  - X_ll u2(~1 - ?`)13)'x(X__l [?`) 

.t..~2()k)(1 1 1--Kol tGol2__X__,)(2_X__I[ff2(X__OI3)A(X__,,O) 
= ( 1  ~SE2(?`)6J,~ 3) + (llB2(?`) + C2(?`)[3) (61) 
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<IIB2(X)13) = <lltG0[2 - X__,)<2 - X d U3(-X II X,)[3)A(A~ IX) (62) 

<11C2(X)13> 

=-(I l-Kol tGo2_X_,) P2(X-I) (2_X_, B 

The explicit value of the source term is 

(1 ~ 6El(X)6J~ 3 ) =  ( l l tG013)~  6 E I ( X ) 6 E ~  - 3) 

(63) 

+ -~ 1 tG o 3 6E2(X [ - X)SE 2 ( 2 -  3 1 3 -  2) 
l - k 0  

(64) 

The first term is of order N ( N t )  if X = 2 - 3 ,  and of order Nt  if 
X=/= 2 -  3. 

If X = 2 - 3, or X =/= 2 - 3, the second term is of order Nt. 
In the restricted 2BA where we only consider X = 2 - 3, the collective 

part of the source does not come into play in the N ~ o~ limit. But it does 
appear in the general 2BA. It also had a finite effect in the linear theory 
where the form of F~ had a term ~6F2(2 - 3). We will show that it is easy 
to enrich the restricted 2BA to include the collective source term. In so 
doing one achieves t 4 accuracy in the expression for the self-energy. 

5. THE RESTRICTED 2BA 

5.1. Integral Equation 

In the present section we study the microscopic truncation 

<11r~(2)13) = <]lH(2)13)~g~ - 3) (31) 

The object is to find the matrix elements (1 [H(2)13 ) to construct the kernel 
~1]~'i(2)13) of Section 2. To fix H we use the hierarchy equation for U2(X ) 
for the special value X = 2 - 3. 

We set down the surviving part of the averages in the limit N ~  oe. 
The direct source term becomes 

(11J2(2 - 3)13) = N2( l l tGol3 ){1  + ff2(2 - 3)} (65) 
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The two-particle correlation functions are 

(11U---2(2 - 3)[3) = N2( l lHI3){  1 + F2(2 - 3)} (66) 

( l [ 0 2 ( X ) 1 3 ) = N { l + f f 2 ( 2 - 3 ) } i o ( 2 - 3 [ X ) ( l l H [ 3 ) ,  X : ~ 2 -  3 (67) 

ff3(2 - 31 - X) + f f 2 ( 2  - 3 - ~k) - ff2(X)ff2(2 - 3) 
io(2 - 3 IX) = (68) 

1 + ff2(2 - 3) 

The three-particle correlation function is determined by  the same H:  

( l l  U2(3 - 2 II ?h)13) -- N2( I IHI3)P2(Xl  + 3 - 2) (69) 

which is the only contribution that survives the N ~ oo limit. Eliminating 
(11H(2)[3), we see that the restricted 2BA is equivalent to the truncation 

r 2 ( x ,  + 3 - 2) 
(11U3(3 - 2 LI X,)I3) = (11U2(2 - 3)13 ) (70) 

1 + f2 (2  - 3) 

_ / o ( 2  - 31 ?~) (2  - 3 IX) (71 )  ( l l  U2(X)I3) = ( l l  U2(2 - 3)13) N 

One finds that the terms in U2(?h) involving sums over ?'1 vanish in the 
N ~ ~ limit, ff2(X) vanishes while B2 contributes. 

We  thus find the integral equation 

( l l  U 2 ( 2  - 3)13 ) - N(lltGo[3)(3 [ U 3 ( 2  - 3)13 ) 

p . ( 3  - _x) 
- (lltG0l_~) (2[ U2(2 - 3)[3) 

1 + F2(2 - 3) 

= N~(lltGo[3){1 + F2(2 - 3)} (72) 

In terms of ( l [ H ] 3 ) ,  this is 

( l l H I 3 )  - N(ll tGol3)(3lHI3 ) - ( l l f f [_~) (~ lHI3)  = (lltG013) (73) 

where 

<1[ tGoIX)F2(3 - X) 
(11q~(2; 3)IX ) -- (74) 

1 + P2(2 - 3) 

For  complete randomness we have the solution 

(3 [H[3)  = (3[tG~[3) (75) 

which is the result quoted in Section 3. For  complete randomness  ( I [ H ] 3 )  



Multiple Scattering in Random Media 599 

is not needed for the kernel (11_K1(2)13), since for X 4= 2 - 3 (2 - h I u2(x)13) 
vanishes. 

5.2. One-Dimensional Delta Function 

We return to the general random system, treating the delta-function 
case when (lit]2) is independent of the wave vectors. All of the correlation 
functions are independent of the first wave vector. Then 

tGo(3) 
H(3) = 1 - NtGo(3) - ~(2; 31 _~) (76) 

The kernel (11 K1(2)]3 ) is 

/71(2; 3) = N t H ( 2 ;  3)[1 + ff2(2 - 3)] [Go(3 ) + G~ ~ 7  - -~) i 0 ( 2  - 31-~) 1 
(77) 

Since both the kernels/7o and K~I are independent of the first wave vector, 
we can find the resolvent R*. This leads to a self-energy 

(78) 

(79) 

s = N t / @ ( 2 )  

@(2) = 1 - tG0(3_)F2(2- 3) 

+ + - NtH(2g 3 ) (  1 
t 

The expression for the self-energy has the form of a rational fraction in t. 
The complete expression in the enriched restricted 2BA is obtained by 
addition of the contribution of the collective terms. We now turn to this 
topic. 

5.3. Addition of the Collective Contribution 

In the restricted 2BA we lose most of the effects of the collective terms. 
The direct part of the source term for F~ is of order t. The treatment of 
nonlinear fluctuations leads to tG0(3)--> tGo*(3) for the zero correlation 
case. It only gives part of the t 2 term in F~ correctly in iteration. The 
collective part of the source term is also of order t 2. It was treated in the 
linear fluctuation theory, and gave a finite contribution when there are 
correlations. 

It is a simple matter to include the collective effect along with the 
restricted 2BA. We demonstrate a procedure for the delta-function case. 
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Consider the ansatz 

1 Y 6 E 2 ( 2 -  313 - 2)] F ~ = H ( 3 )  6 E ~  ~ 1 y 

H(3)  
- tG0(3) 8J~(2; 3) (80) 

y = NtGo(2  ) + x,  x = tGo(5) f f2(2  - 5)A(512) (81) 

The ansatz for F 2 is now enhanced to include the collective part of the 
source term. Since H ( 3 ) ~  tG0(3) as t---)0 this will be accurate at least to 
lowest order. One can now determine H in the same way as before, i.e., 
multiply F~ by 6 E 2 ( 2 -  3), sum over a, and take the average. One finds 
that in the N ~  m limit there is no change in H(2; 3). Thus there is simply 
an addition to Kl(2; 3) due to collective terms. It is 

Y /-/(2; 3)6 F2(2 - 5_)~F2(2- 3)tG0(5_) (82) Ac*K',(2; 3) - 1 - y 

The total kernel is now accurate through order t 3, so that the self-energy is 
accurate to order 14. 

5.4. General Case 

To handle the case of a general (lit[27 and arbitrary correlations, 
write 

~(3)  <31~1_x7<2 - _Xl U2(2 - 3)13) 
(31U2(2 - 3)137 = 1 - N(3l tGo[37 + 1 - N(3l tGo[37 (83) 

~(1)  = N2<l[tGo[3){1 + ff2(2 - 3)} (84) 
We have used the integral equation to express the diagonal elements in 
terms of the off diagonal (2 - h I U2(2 - 3)[37 for X v ~ 2 - 3. The off diago- 
nal ( 2 -  h I U2(X)]37 may also be expressed in terms of these quantities. 
Elimination of the (3[ U2(2 - 3)[3) leads to a new equation 

(l[  U2(2  - 3)[37 - (llq~,l X_)(_Xl ~2(2 - 3)137 = q~(1) (85) 

~1(1) = ~(1){1  + N(31tGol3)} (86) 

(l[@l[X) = (l[q~[X) + N(l[ta~[3)(31@[X) (87) 

We view everything as driven by (11Uz(2 - 3)[3). It obeys a nonsepar- 
able integral equation. The Fredholm theory gives in lowest order 

(1 [~,I_X,)Wt(_Xl) 
(11 U2(2 - 3)137 -- r~(1) + 1 - Tr4~ (88) 
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The kernel /~l is 

(1[K1(2)13) = (1/N)( l l tGol3)(3l  U2(2 - 3)13) 

+ (1 /N) ( l l tao l2  - X ) ( I 0 / N ) ( 2  - 3 1 X_)(2 -X__ I u2(2 - 3)[3) 

(89) 

Eliminating the (31 U2(2 - 3)]3> we obtain 

(11K'1(2)13) = (l / N )(lltG~13)cp(3) + (1/  N )[ (lltG~I3) 

+ (ll tG0[(2 - X_)/N)i0(2 - 31 X__)](_XlU2(2- 3)13) (90) 

This exhibits explicitly the t 3 correction to K~ in the restricted 2BA. To 
get the complete kernel to order  t 3 we have to add the collective contribu- 
tion. 

6. RELATION TO OTHER WORK 

We first compare  the results of the restricted 2BA with the SCA of 
Schwartz and Ehrenreich (SE). (7) It will suffice to treat the one-dimensional  
delta-function case. We define a quanti ty 

(11112) (91) 
(11~ -- 1 + NGo(2)(2IA]2 ) 

The SE equations, in our  notation, are for the uncorrelated case 

(11ol2) = ( l l t l 2 )  + (llAI3_)Nao(3_)(3_lo13)ao(3_)(3_lt12) (92) 

where the bar  under  wave vectors means a sum. For  the delta-function 
potential (11012) is independent  of 1: 

0(2) = t[1 + L 1 (93) 

In the SE theory L and 0(2) are also independent  of 2: 

L = A (3)NGg( 3)0 (3) (94) 

Write 

1 + L = 1 / ( 1  - 4) ( 9 5 )  

Then  ( satisfies a cont inued fraction 

UtZG2(3) Ut2G2(3) 

= 1 - ~ - NtGo(3 ) NflG2(4_) (96) 

I - NtGo(3) - 1 - ~ - NtGo(4) 
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In the restricted 2BA we found 

= NtZGo(3)G~(3) (97) 

There is agreement to the first power of t in the denominator of ~. 
We can carry out a corresponding comparison for general randomness. 

For simplicity we study the delta-function problem. In the present theory 
we use the total kernel K in the restricted 2BA and obtain 

0(2) = t/ |  @(2) = 1 -~ (2 )  (98) 

as given in Section 5. 
The Schwartz-Ehrenreich equations for this case may be written as 

0(2) = t(1 + M ) / [ 1  -r (99) 

where 

q5(2) = A (3)Go(3),~2(2 - 3) (100) 

Since 

o(2) 
A(2) = [1 - NGo(2)o(2)] (101) 

t(1 + M)  
A(2) = [1 - r  Nao(2)t(1 + M ) ]  (102) 

The quantity M is 

M = A ( 3 ) a o ( 3 ) a ( 3 ) [ N  + f f2 (4 -  3)Go(4)]  (103)' 

We have to solve the difficult nonlinear integral equation for qb, 

(1 + M)G0(3_)F2(2 - 3) 
*(2) = t 1 - * (3 )  - NtGo(3_)(l + M )  (104) 

together with a determination of M. 
We may write the solution as 

t 69(2) + M 
a(2) - 1 - ~*(2) ' ~*(2) - 1 + M (105) 

We note that M is of order t 2 and qb(2) is of order t. To t 2 accuracy we 
may put (*(2)---> qb(2) + M in the SE equations. Here M can be evaluated 
to the first power in o 

M---~ t2Go(3) IN  + Go(4)f f2(3-  4)]  
1 - NtGo(3 ) - q)(3_) (106) 
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We iterate q) once and set M -- 0: 

�9 (2) --~ tGo(3)P2(2 - 3) + E q)(3) + NtG~ G~ - 3 ) t  
1 - UtGo(3 ) - ~ ( 3 )  (107) 

Comparison of this expression with the present theory verifies two 
obvious points. The first is that even without the collective contribution the 
restricted 2BA involves the three-point static correlation function and with 
it a dependence on the wave vector 2. Second, the collective contribution 
brings in the four-point function and with it a further 2 dependence. This is 
of course a consequence of the exactness to order t 3. Schwartz and 
Ehrenreich employ approximations in setting up their equations, so that 
only the pair distribution enters. 

We will only make a comparison with the EMA of L. Roth (8~ for the 
uncorrelated case. As noted by Roth, the theory is then equivalent to earlier 
theories of Faulkner (9) and Klauder. (1~ In the case of general correlations, 
it is more natural to compare the EMA with the general 2BA. 

In the uncorrelated case and a delta-function potential, the EMA is 
very simple. There is the relation between the exact G(2) and Z(2) 

G(2) = G0(2){ 1 - G0(2)Z(2)}- '  (108) 

Then the self-energy is independent of 2 and approximated by 

Z ( 2 ) =  N t / [ 1  + t i e  o -  1]]  

I 0 = G0(3  ), I = G ( 4 )  (109) 

We combine the two equations to form the fraction 

= N t  1 - t 1 - a - - g 3 ) Y  ( 1 1 0 )  

where we have used I 0 - I = - Go(}_)G(3)s This is identical to the SCA. 
Naturally, this comparison of the restricted 2BA with the SCA and the 

EMA only holds in the small-t region. It is a physically appealing feature of 
the SCA and EMA that they use exact medium propagators. Of course this 
leads to difficult computational problems in satisfying self-consistency. 
However, one can hope that they are reasonable approximations in a larger 
domain of Nt and t values. The uncertainty lies in the neglect of higher- 
order elementary scattering acts. The 2BA on the other hand constructs an 
explicit approximation to the propagator for all values of Nt and t. 
However, there is no reason to expect it to be accurate for large values of t. 
The domain of validity of all of these approaches can only be assessed 
within the framework of a systematic theory. 
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We have tried to show that the microscopic approach to multiple 
scattering is quite flexible. With simple rearrangements of the basic equa- 
tions and with elementary truncations, one can obtain accurate results in 
the small-t domain. It is also possible to introduce self-consistent propaga- 
tor theories with a different choice of the linear fluctuation terms. Finally 
expressions for the average of products of resolvent operators, of a type 
needed in the study of transport and localization, may be obtained directly. 
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